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Subgrid scale and backscatter model for magnetohydrodynamic turbulence
based on closure theory: Theoretical formulation
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The spectral eddy and backscatter viscosity and the spectral eddy and backscatter resistivity for incompress-
ible, three-dimensional, isotropic, nonhelical magnetohydrodynamic~MHD! turbulence are constructed using
the eddy-damped quasinormal Markovian statistical closure model developed by Pouquet, Frisch, and Le´orat
@J. Fluid Mech.77, 321 ~1976!# in terms of primitive variables. The approach used is an extension of the
methodology developed by Leslie and Quarini@J. Fluid Mech.91, 65 ~1979!# for fluid turbulence to MHD
turbulence. The eddy and backscatter viscosities and the eddy and backscatter resistivities are calculated
numerically for assumed kinetic and magnetic energy spectra,Ev(k) andEB(k), with a production subrange
and ak25/3 inertial subrange for the two casesr A51 andr A5

1
2 , wherer A5Ev(k)/EB(k) is the Alfvén ratio.

It is shown that the effects of the unresolved subgrid scales on the resolved-scale velocity and magnetic field
consist of an eddy damping and backscatter. The eddy viscosity and resistivity, and the backscatter viscosity
and resistivity~the correlation function of the stochastic velocity and magnetic backscatter force! are shown to
have a dependence onk/kc , wherekc is the cutoff wave number, which is very similar to the dependence
calculated in the pure~i.e., nonmagnetic! Navier-Stokes turbulence case. The eddy viscosity and resistivity, and
the backscatter viscosity and resistivity numerically calculated here can be used to develop improved subgrid-
scale parametrizations for spectral large-eddy simulations of homogenous MHD turbulence.

DOI: 10.1103/PhysRevE.66.026309 PACS number~s!: 47.65.1a, 47.27.2i, 47.10.1g, 52.30.Cv
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I. INTRODUCTION

Large-eddy simulation~LES! @1–3# is essentially the only
practical method for computing the three-dimensional, tim
dependent large scales of magnetohydrodynamic~MHD!
flows @4,5# at large fluid and magnetic Reynolds numbers.
the subgrid scales are assumed to be universal, it is ap
priate to model them using statistical methods. A subg
scale and backscatter model that can satisfactorily reprod
the statistical effects of the small-scale dynamics on
resolved-scale dynamics is crucial for a successful LES.
though LES has been widely used in fluid turbulence sim
lations, it has not been widely applied in MHD turbulen
because subgrid-scale modeling for MHD turbulence@6–8#
is currently not well developed.

The eddy damping and the backscatter terms@9,10# in the
resolved-scale velocity and magnetic field equations will
computed numerically here using the eddy-damped, qu
normal Markovian~EDQNM! closure model andassumed
formsof the kinetic and magnetic energy spectra which ha
both a production subrange and ak25/3 power-law inertial
subrange; the production and inertial subranges are gene
by distinct mechanisms affecting the dynamics of the kine
and magnetic energy. For the illustrative calculations p
sented here, the two Alfve´n ratio casesr A51 andr A5 1

2 will
be considered. The results of the present investigation
expected to be useful for the development of subgrid-sc
models for spectral LES of large fluid and magnetic Re
nolds number MHD turbulence encountered in space
astrophysical plasmas@13,14#.
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II. FILTERING AND THE MHD EQUATIONS

In this section, filtering in spectral space will be briefl
reviewed, together with the equations for incompressib
three-dimensional, nonhelical MHD turbulence. The filter
MHD equations will also be presented.

A. Filtering

In LES, a filterG(x,x8) @1,9# is introduced to partition the
fields f (x,t) into resolved-scale fields and subgrid-sca
fields

f̄ ~x,t !5E G~x,x8! f ~x8,t !d3x8, ~1!

f ~x,t !85 f ~x,t !2 f̄ ~x,t !, ~2!

respectively. Here it is assumed that the filter is time ind
pendent and a scalar. This decomposition is performed
the velocity, magnetic field, and pressure in the MHD eq
tions.

Most numerical simulations of MHD flows are performe
for homogeneous turbulence, in which case the filtering
eration can be written in spectral space as

f̄ ~k,t !5G~k! f ~k,t !. ~3!

For homogeneous, isotropic turbulence,G(k)5G(k), which
will be used henceforth. The two filters most often used
subgrid-scale modeling and LES of fluid turbulence are
©2002 The American Physical Society09-1
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sharp cutoff filter and the Gaussian filter~the top-hat filter is
similar to the Gaussian filter!. With the cutoff wave number
kc , the sharp cutoff filter is

G~k!5H 1 if k,kc

0 if k>kc
~4!

which provides a sharp separation between resolved and
resolved scales~see Refs.@9#, @15#, @16#!. This filter will be
used in the present calculations.

B. The MHD equations

The standard MHD equations with zero mean fields a
zero external forces are the velocity equation

S ]

]t
2n¹2D v5B•“B2v•“v2“p ~5!

and the magnetic field equation

S ]

]t
2j¹2DB5“3~v3B!, ~6!

with the velocityv and the magnetic fieldB satisfying the
solenoidality constraints

“•v5“•B50. ~7!

The constant kinematic viscosity and magnetic diffusiv
are denoted byn andj, respectively.

For homogeneous turbulence, the Fourier-transform
MHD equations in wave number space are

S ]

]t
1nk2D v i~k,t !5Mi jk~k!(

n

@v j~p,t !vk~q,t !

2Bj~p,t !Bk~q,t !# ~8!

and

S ]

]t
1jk2DBi~k,t !5Mi jk

B ~k!(
n

Bj~p,t !vk~q,t !, ~9!

where(n represents the summation overp and q with the
triadic restrictionk5p1q. The three-point interaction ten
sors are defined as

Mi jk~k!52
i

2
@kkPi j ~k!1kj Pik~k!#, ~10!

Mi jk
B ~k!5 i e i lmklem jk , ~11!

wheree i jk is the unit antisymmetric tensor and the solenoi
projection tensor isPi j (k)5d i j 2kikj /k2.

C. The filtered MHD equations

The filtered velocity and magnetic fields in wave numb
space are
02630
n-
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v̄ i~k,t !5G~k!v i~k,t !, ~12!

B̄i~k,t !5G~k!Bi~k,t !, ~13!

respectively. The filtered velocity equation is

S ]

]t
1nk2D v̄ i~k,t !5Mi jk~k!(

n

G~k!@v j~p,t !vk~q,t !

2Bj~p,t !Bk~q,t !# ~14!

and the filtered magnetic field equation is

S ]

]t
1jk2D B̄i~k,t !5Mi jk

B ~k!(
n

G~k!Bj~p,t !vk~q,t !.

~15!

III. EDDY DAMPING AND BACKSCATTER
IN MHD TURBULENCE

A. The resolved-scale energy spectrum evolution equations

Accurate subgrid-scale modeling in MHD can b
achieved using the second moment energy transfer equa
@17–20#. Only the case of nonhelical, and statistically s
tionary MHD turbulence is considered here. Following L
slie and Quarini@9#, the resolved-scale kinetic energy an
magnetic energy spectrum are

Ēv~k,t !5
k2

2 E G~k!2^v i~k,t !v i~2k,t !&dVk , ~16!

ĒB~k,t !5
k2

2 E G~k!2^Bi~k,t !Bi~2k,t !&dVk , ~17!

respectively, where the integration is over the isotropic so
angleVk .

In the EDQNM approximation, the resolved-scale kine
energy and magnetic energy spectrum evolution equat
are

S ]

]t
12nk2D Ēv~k,t !5E E

n
G~k!ukpq~ t !~Tv

vv1Tv
vB

1Tv
BB!dp dq, ~18!

S ]

]t
12jk2D ĒB~k,t !5E E

n
G~k!ukpq~ t !~TB

vB1TB
BB!dp dq,

~19!

respectively, where@19,20#

Tv
vv~k,p,q,t !5

k

pq
bkpq@k2Ev~p,t !2p2Ev~k,t !#Ev~q,t !,

~20!

Tv
vB~k,p,q,t !52

kp

q
ckpqEv~k,t !EB~q,t !, ~21!
9-2
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Tv
BB~k,p,q,t !5

k3

pq
ckpqEB~p,t !EB~q,t !, ~22!

TB
vB~k,p,q,t !5

k5

p3q
ckpqEv~p,t !EB~q,t !

1
k

pq
hkpq@k2EB~p,t !2p2EB~k,t !#Ev~q,t !,

~23!

TB
BB~k,p,q,t !52

k3

pq
ckpqEB~k,t !EB~q,t !. ~24!

The geometrical coefficients are

bkpq5
p

k
~xy1z3!, ~25!

ckpq5
p

k
z~12y2!, ~26!

hkpq5
p

k
~z1xy!, ~27!

~x, y, andz are the cosines of the interior angles opposite
sides formed byk, p, and q, respectively!, and the three-
point correlation time scale is

ukpq~ t !5
1

hk~ t !1hp~ t !1hq~ t !
, ~28!

with eddy-damping rate

hk~ t !5~n1j!k210.19Ko3/2$k3@Ev~k,t !1EB~k,t !#%1/2

1A2/3kF E
0

k

EB~p,t !dpG1/2

, ~29!

where Ko is the Kolmogorov constant.

B. Formal expressions for the eddy damping and backscatter

The eddy viscosity and backscatter viscosity are given

n t~kukc ;t !5
1

k2 E E
n

G~k!ukpq~ t !
kp

q
@bkpqEv~q,t !

1ckpqEB~q,t !#dp dq, ~30!

nb~kukc ;t !5
1

2k2Ēv~k,t !
E E

n
G~k!ukpq~ t !

3
k3

pq
H bkpqEv~p,t !Ev~q,t !

1ckpq

p2

k2
Ev~k,t !EB~q,t !J dp dq, ~31!
02630
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respectively, and the magnetic resistivity and backscatter
sistivity are given by

j t~kukc ;t !52
1

k2 E E
n

G~k!
k

pq
ukpq~ t !@hkpqp

2Ev~q,t !

1ckpqk
2EB~q,t !#dp dq, ~32!

jb~kukc ;t !5
1

2k2ĒB~k,t !
E E

n
G~k!ukpq~ t !

3
k3

pq
H k2

p2
ckpqEv~p,t !EB~q,t !

1hkpqEB~p,t !Ev~q,t !J dp dq, ~33!

respectively.
To identify the terms that contribute to the eddy dampi

and backscatter, the resolved-scale MHD equations are w
ten as

H ]

]t
1@n1n t~kukc ;t !#k2J v̄ i~k,t !

5 f i
v~k,t !1Mi jk~k!(

n
G~k!

3@v j~p,t !vk~q,t !2Bj~p,t !Bk~q,t !# ~34!

and

H ]

]t
1@j1j t~kukc ;t !#k2J B̄i~k,t !

5 f i
b~k,t !1Mi jk

B ~k!(
n

G~k!Bj~p,t !vk~q,t !. ~35!

The correlations of the stochastic backscatter forces,f i
u and

f i
b , are 2k2Ēv(k,t)nb(kukc ;t) and 2k2ĒB(k,t)jb(kukc ;t),

respectively.

IV. NUMERICAL RESULTS

Computations are performed for stationary, assumed s
tra @21–25#

EB~k!5KoS k

kp
D s15/3 e2/3k25/3

11S k

kp
D s15/3, ~36!

Ev~k!5r AEB~k!, ~37!

wheres51, kp54, andr A is the Alfvén ratio. The assumed
value of the Kolmogorov constant Ko is 1.7, and the ene
dissipation ratee is 7.243104. The kinematic viscosity and
magnetic resistivity are chosen asn5j50.004. The wave
number range iskP@1,512#, with the discrete wave number
9-3
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given by kl5kmin2
(l21)/4 with kmin51.0 andl 51,...,37. The

cutoff wave number is taken to bekc5kmax/8564.
Figures 1 and 2 show the eddy viscosity and backsca

viscosity for the pure Navier-Stokes case@25# given by

n t~kukc ;t !5
1

k2 E E
n

G~k!ukpq~ t !
kp

q
bkpqEv~q,t !dp dq,

~38!

nb~kukc ;t !5
1

2k2Ēv~k,t !
E E

n
G~k!ukpq~ t !

3
k3

pq
bkpqEv~p,t !Ev~q,t !dp dq, ~39!

respectively. The normalization is given by@17#

n t~kukc ;t !5n t
1~kukc ;t !F Ēv~kc ,t !

kc
G1/2

, ~40!

nb~kukc ;t !5nb
1~kukc ;t !F Ēv~kc ,t !

kc
G1/2

. ~41!

Figures 3 and 4 show the eddy viscosity and resistivity, a
the backscatter viscosity and resistivity, respectively, for
nonhelical MHD case havingr A51, with the normalizations
~40!, ~41!, and

j t~kukc ;t !5j t
1~kukc ;t !F ĒB~kc ,t !

kc
G1/2

, ~42!

jb~kukc ;t !5jb
1~kukc ;t !F ĒB~kc ,t !

kc
G1/2

. ~43!

The addition of the magnetic field modifies the eddy a
backscatter viscosities as follows. The eddy viscosity
slightly increased in magnitude due to the additional con
bution of the magnetic term 1/k2**nG(k)ukpq(t)
3(kp/q)ckpqEB(q,t)dp dq: this contribution increases in
magnitude asEB(q,t) increases. The backscatter viscosity
also slightly increased in magnitude due to the additio

FIG. 1. The eddy viscosity~38! normalized according to Eq
~40! for the pure Navier-Stokes case.
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contribution of the magnetic term 1/2k2**nG(k)ukpq(t)
3(kp/q)ckpqEB(q,t)dp dq: this contribution also increase
in magnitude asEB(q,t) increases. The eddy viscosity an
eddy resistivity are comparable in magnitude and wave nu
ber dependence, withn t

1(kukc ;t) somewhat larger than
j t

1(kukc ;t), particularly over the rangek/kc'0.3– 0.8. The
backscatter viscosity and backscatter resistivity are also c
parable in magnitude, withnb

1(kukc ;t) slightly larger than
jb

1(kukc ;t) over all k/kc .
For comparison, Figs. 5 and 6 show the eddy viscos

and resistivity, and the backscatter viscosity and resistiv
respectively, for the nonhelical MHD case havingr A5 1

2 ,
with the normalizations~40!–~43!. The eddy resistivity and
backscatter resistivity have a dependence onk/kc , which is
qualitatively very similar to that of the eddy viscosity an
backscatter viscosity. The choicer A5 1

2 is motivated by solar
wind observations@13,14#. The behaviors of these eddy an
backscatter viscosities and resistivities are similar to tha
the r A51 case, except that both the eddy viscosity and ba
scatter viscosity have increased, while the eddy resisti
and backscatter resistivity have decreased significantly. B
j t

1(kukc ;t) and jb
1(kukc ;t) exhibit values near zero for a

significant range ofk/kc .

V. CONCLUSIONS

The spectral eddy viscosity and resistivity, and backsc
ter viscosity and resistivity were computed for thre
dimensional, incompressible, isotropic, nonhelical MHD tu
bulence using the EDQNM closure in terms of primitiv
fieldsv andB. Formal expressions for the eddy damping a
backscatter terms in the resolved-scale velocity and magn
field equations were presented using a straightforward ap
cation of the formalism used for Navier-Stokes turbulence
Leslie and Quarini@9# ~see Ref.@25# for another recent ap
plication!. The kinetic and magnetic energy spectra both h
a production subrange and an inertial subrange, and w
constructed for the two casesr A51 andr A5 1

2 . A numerical
evaluation of these viscosities and resistivities showed
the addition of a magnetic fieldincreasesboth the eddy and

FIG. 2. The backscatter viscosity~39! normalized according to
Eq. ~41! for the pure Navier-Stokes case.
9-4
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FIG. 3. The eddy viscosity
~30! and eddy resistivity~32! nor-
malized according to Eqs.~40!
and ~42!, respectively, for ther A

51 case.

FIG. 4. The backscatter vis
cosity ~31! and backscatter resis
tivity ~33! normalized according
to Eqs.~41! and~43!, respectively,
for the r A51 case.

FIG. 5. The eddy viscosity
~30! and eddy resistivity~32! nor-
malized according to Eqs.~40!
and ~42!, respectively, for ther A

5
1
2 case.

FIG. 6. The backscatter vis
cosity ~31! and backscatter resis
tivity ~33! normalized according
to Eqs.~41! and~43!, respectively,
for the r A5

1
2 case.
026309-5
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backscatter viscosities. Also, the qualitative form and wa
number dependence of the eddy and backscatter resistiv
are similar to the eddy and backscatter viscosities. It is a
apparent that the reduction of the Alfve´n ratio results in
smaller eddy resistivity and backscatter resistivity. The me
odology developed here provides a statistical representa
of the effects of the subgrid scales on the resolved scales
has potential applications in spectral LES of large fluid a
magnetic Reynolds number homogeneous MHD turbulen
ys

-
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